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Abstract. The statega, m), defined asi™|«) up to a normalization constant and whereis

a non-negative integer, are shown to be the eigenstatég&iofn)a where f (17, m) is a nonlinear
function of the number operatér The explicit form off (i1, m) is constructed. The eigenstates of
this operator for negative valuesmfare introduced. The properties of these states are discussed
and compared with those of the statéem). The eigenstates corresponding to the positive and
negative values ok are shown to be the result of nonunitarily deforming the number spates
and|0) respectively.

1. Introduction

Coherent states are important in many fields of physics [1,2]. Coherent giateefined

as the eigenstates of the harmonic oscillator annihilation opedatie) = ala) [3], have
properties like the classical radiation field. There exist states of the electromagnetic field
whose properties, like squeezing, higher-order squeezing, antibunching and sub-Poissonian
statistics [4, 5], are strictly quantum mechanical in nature. These states are called nonclassical
states. The coherent states define the limit between the classical and nonclassical behaviour
of the radiation field as far as the nonclassical effects are considered. A generalization of the
coherent states was donedpyleforming the basic commutation relatigh i) = 1 [6,7]. A

further generalization is to define states that are eigenstates of the op&rai@y

f@alf,e)=alf o) 1)
wheref (72) is a operator valued function of the number operater a'a. These eigenstates are
called as nonlinear coherent states and they are nonclassical. In the lineaf {imit: 1, the
nonlinear coherent states become the usual coherent gtatdhe nonlinear coherent states
were introduced, ag-coherent states, in connection with the study of the oscillator whose
frequency depends on its energy [8]. A class of nonlinear coherent states can be realized
physically as the stationary states of the centre-of-mass motion of a trapped ion [9]. These
nonlinear coherent states exhibit nonclassical features like squeezing and self-splitting.

The photon-added coherent staesn) [10] are defined as
~tm
o) = —— 1 )
(alamatmia)

wherem is a non-negative integer. The stafesm) exhibit nonclassical features like phase
squeezing and sub-Poissonian statistics. These states are produced in the interaction of a two-
level atom, with ground statl) and excited statg), with a cavity field initially prepared

in the coherent stater) [10]. Let the initial state of the atom-field system|ig|e) and the
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interaction Hamiltoniaril befig(c*a +o~a'). Heres™ is the flip-operator corresponding to
the atomic transitiong) — |e) and its conjugate ~ corresponds to the transition from the
excited state to the ground state. If the coupling congtamsmall, the state of the atom field
at timer, such thagr << 1, can be written as

iH
[V (1)) = |a)le) — %IOOI@% ®3)

Using the interaction Hamiltonial = %ig(c*a + o—a"), the statey (1) becomega)|e) —
igta'|a)|g). If the atom is detected to be in the ground sigte then the field is in the state
a'|a) which is the one-photon-added coherent statd). If the interaction is a multiphoton
processa (a') — a™ (a™), them-photon-added coherent stage m) can be produced.

In this paper it is shown that the photon-added coherent states can be interpreted as
nonlinear coherent states. This is done by showing that the $tate$ obey the equation

[, m)aloe, m) = ala, m) 4

with a suitable choice for the functiofi(n, m). The operatorf (7, m) is also a valid operator
for negative values ofz also. The eigenstates gf(n, m)a with negative values oz are
constructed and their properties compared with thoge,of).

2. Construction of f(n,m)

In this section we construct the explicit form of the operator valued funcfigh m). The
coherent statele) satisfy, by definition,

ala) = ala) (5)
wherex is a complex number. Premultiplying both the sides of this equatiaii’byields
a™ala) = ad™|a) (6)

wherem is a non-negative integer. Using the commutation relatio@{] = 1, the above
equation is written as

@a™ — ma'm V) = ad™|a) (7)
which, making use of the identity=—aa’ = 1, leads to
~ m A\ Atm _ atm
(a —1+&T&a>a lo) = aa'™ o). (8)
Comparing equation (4) with (8) gives the expressionff¢t, m) as
A’ = 1 _— . 9
£ Gi.m) T3 9)

This shows that the photon-added coherent states can be interpreted as nonlinear coherent
states. These states are a class of nonlinear coherent states that can be physically realized in
the interaction of a two-level atom with a cavity field that is initially prepared in the cohrent
state|w).

3. |a, m) as deformedm-photon number state|m)

In this section itis shown that the photon-added coherent states can be written as a nonunitarily
deformed number state. This is achieved by the method given by Seaaltfl1]. First, a
brief review of the method is given. Consider an ‘annihilation operatorhich annihilates
a set of number states;),i = 1, 2, ..., k. Then we can construct a sectrby repeatedly



Photon-added coherent states as nonlinear coherent states 3443

applyingA®, the adjoint ofA, on the number stafte;). Thus we havé sectors corresponding
to the states that are annihilated &y A given sector may turn out to be either finite or infinite

dimensional. If a sector, s&y;, is of infinite dimension then we construct an operaigr
~ At . i ~
such that the commutatoA[ G; ] = 1 holds in that sector. Then the eigenstated chin be

~ 1 ~
written as €% |n;). If the operator is of the formf (71)a”, wherep is a non-negative integer
and f (i) is a operator valued function of the number operéaiar, such that it annihilates the

st
number statlg) thenG; is constructed as

st_ 11 PSP

The photon-added coherent states are the eigenstatggipi)a with f (7, m) given
by equation (9). The operatgft(n, m)a annihilates the vacuum staf@ and them-photon
statém). The states in between the vacuum state anditipdnoton state are not annihilated.

In this sense it is different from th@-photon annihilation operaté™ which annihilates all

the stateg), i =0, 1, 2, ..., m. To discuss the case @f, m) let

N m R

A=(1-1m)e (1)
The adjointAT is given by

At _atfq M

Ar=at(1- 5w)- (12)

We construct the sectdi, by repeatedly applyingi™ on the vacuum stat®). S is the set
li),i =0,1,2,...,m — 1 and it is finite dimensional. The sect§y,, built by the repeated
application of AT on |m), is the set|i),i =m,m+1,... and it is of infinite dimension.
Hence we can construct an opera@t such that i, G'] = 1 holds inS,,. To construct
G1, corresponding to the operatbiven by equation (11), we sg¢t = 1 andj = m in
equation (10) and this yields

Gt =al (13)

Thus on the sectd,, we have A,af1=1 and hence the photon-added coherent states, which
are the eigenstates df can be written asé’ |m). However, this is not a unitary deformation.

4. Eigenstates off (n, m)a with negative m

The form of f (7, m), given by equation (9), suggests that it is a well-defined operator valued
function, on the harmonic oscillator Hilbert space, also for negative integer values lof

this section the nonlinear coherent states, with negativte the expression foy (i, m), are
constructed. Denoting the eigenstategday—m), the equation to determine them is

m N
(1 + m) ala, —m) = al|a, —m). (14)
Expanding|a, —m) in terms of the number statés) as
oo
lo, —m) = chm) (15)
n=0

wherec, are the expansion coefficients and substituting the expansion in equation (14) leads
to the recursion relation

_ m!v/nla”

~ mrm © (16)

Cn
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The constantg is determined by normalization. The normaliZed—m) is given by

0] an

—m) = Nm!
e, —m) " ;M(n+1)(n+2)...(n+m)|n)
o (17)
=m: Z(n-l-—m)lz \/2F2(11m+1m+1|a|)

where; F>(1, 1, m+1, m+1, |«|?) is the generalized hypergeometric function [12]. The number
state expansion for the stdte m) is [10]

exp(—|a|?/2) Z (m +n)'

o,m) = n+m 18
| > Lm(—|a|2)m| ) ( )
whereL,,(x) is the Lauguerre ponnomlaI of order defined by [12]
(= x)"m!
Ly(x)=)_ _Cx)tml (19)

= (nh)2(m — n)!

The statda, —m) involves a superpostion of all the Fock states starting with the vacuum
state|0). But in the statda, m) the Fock state$0), |1)...|m — 1) are not present. This
important difference leads to different limiting cases of the states) and|«a, —m) when
a — 0. Inthe limita — O the statda, —m) becomes the vacuum stat@, which has
properties like a classical radiation field, irrespective of the value ahd the statéw, m)
becomes the Fock stapa) which is nonclassical. In the limiz — 0 the state$x, m) and
|a, —m) become the coherent state. Thus,|«a, —m) (o, m)) is a state that is intermediate
between the vacuum state (the number diaj¢ and the coherent state.

The photon-added coherent states are obtained by the actdti oh the coherent state.
The statesx, —m) can be written in a similar form using the inverse operatofsanda ™ [13].
These operators are defined in terms of their actions on the number|sjadsdollows:

1
a7t n) = n+1 20
) ml ) (20)
1
a™n) = ﬁ'” -1 forn=0 (21)
a™toy =o. (22)
Using these inverse operators and equation (17) the|staten) can be written as
lo, —m) = Na"™"a"|a). (23)

The statesa, —m) correspond to the nonlinear coherent states with replacingm in
f (@i, m). However, they are obtained by the actioradf”a " on |«) and nota™ on |a).
Using the method reviewed in section 3 we can show that

o, —m) = € |0) (24)

whereG' = AT%@; The statda, —m) is obtained by deforming the vacuum st
while the statéa, m) is obtained from the:-photon statém).

5. Squeezing iNa, —m)

The statda, —m) exhibits squeezing in both and p-quadratures. The- and p-quadratures
are given interms af anda' by
a+at

N (9)

X =
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Figure 1. Uncertaintys, (p?) — (p)2, in p as a function of for m = 1,m = 5 andm = 10 for
the statda, —m). The reakr is denoted as.

The mean values of the relevant operators in the &tatem) are

2 2 |2n n+1)
(@) = aN?m! Z(n+m)'2(n+m+1) (26)
o 2a o loe]?*n! n+D(n+2)
(a%y = a“N°m! ;(n+m)!2(n+m+l)(n+m+2) 27)
and
— N2m12 e o8
(@' Z(n+m),2 (28)

The mean values @' anda ™ are obtained by taking the complex conjugategipfand (a2)
respectively. The uncertainty inis

(%) — ()2 = 1+ 2a"a) + @% + @' — @) - @"h? -2 @)@"h  (29)
and thatinp is
(P? — (p)2=3[1+2(@"a) — @% — (@™ +@?2+@"? - 2(ay@"h]. (30)

In figure 1 the variance ip is shown for real for various values of:. As expected the
uncertainty inp is close to%, the uncertainty irp for the vacuum state, whenis close to
zero. In the case of the stdte m) the variance is close ta + % whena is close to zero. For
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Figure 2. Mandel'sq-parameter as a function pf| form = 1,m = 5andm = 10. |«| is denoted
asr.

real values ofr the p-quadrature is always squeezép?) — (p)? < % for the statga, —m).
For large values of the variance irp approaches that of the coherent statew Hecomes
i the expression for variance pnbecomes the expression for variance inSincep shows
squeezing for reat the x-quadrature exhibits squeezing for imaginary

6. Photon statistics ofja, —m)

The photon number distribution(n) for the statdo, —m) is
p(n) = [(nla, —m)|?
2 loe|?*n!

= N°ml>?— .
(n+m)!2

(31)
Whenm = 0 the distribution becomes the Poissonian distribution whose mean vait|é.is

A measure of the variance of the photon number distribution is given by Mangel's
parameter [14],

((AR)2) — ()
g=— (32)
(n)

The coherent states hayas zero. A negative value gfindicates that the distributiop(n) is
sub-Poissonian and that it is a nonclassical feature. The photon-added cohereit states
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are always sub-Poissonian for all valuesmofFor the statéx, —m) the mean values af and
n? are given by
|2n

(R) = N’m IZZO n+m)|2 (33)
212 o "
(7%) = N?m! Z (n+m)'2 . (34)

In figure 2 theg-parameter, calculated using equations (32)—(34), for the |staten) is
shown as a function gf|. The statesw, —m) haveq always greater than zero indicating that
they are super-Poissonian. For small values tifeg-parameter is close to zero and for large
values ofx it approaches zero.

7. Summary

The photon- added coherent states are nonlinear coherent states. They are the eigenstates of the
operator(1 — =-)a whenm takes positive integer values. This operator is also a meaningful
operator whenn takes negative integer values. The corresponding eigenstates:) are
nonclassical. The photon-added coherent gtate:) results from the action of™ on the

coherent statgr) while the statéa, —m) comes from the action @f' 4" on the coherent
statela). Both|a, m) and|«e, —m) show squeezing. Whilky, m) is sub-Poissonian the state

|ae, —m) is not sub-Poissonian. The statesm) and|«, —m) becomédm) and|0) respectively

inthe limite — 0 but they become the coherent stiatewhenm — 0. The stategr, m) and

|a, —m) are the result of deforming the number stdtesand|0) respectively.
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